POWERED MOBILITY FOR USERS WITH MINIMAL PHYSICAL ACCESS: From Trials to Funding

MARY C. BACCI, PT. MS.

INTERNATIONAL SEATING SYMPOSIUM 2015
INTRODUCTION

- Wheelchair users with minimal physical strength or movement present challenges for access to powered mobility
- Success may be dependent or dual or multiple access methods
- Most likely, driver controls will need to be integrated with computer access, AAC and environmental controls to provide independence
- Systematic evaluation and trials increase the likelihood that funding will be secured
OBJECTIVES

1. Identify 3 switch types for unconventional switch use for users with reliable movement at 1 or more switch sites and limited physical strength
2. Provide rationale for dual driver control methods to obtaining funding approval within guidelines for private insurance, Medicaid and Medicare
3. Identify physical requirements and potential for eye gaze as a method of driver control, positioning independence and environmental control
BACKGROUND

- I have been a school based physical therapist since 1980, and am currently working for Northern Suburban Special Education District (NSSED)
- NSSED is a co-operative of local school districts in the Northern suburbs of Chicago, formed in response to Public Law 94-142, re-authorized as the Individuals with Disabilities Education Act (IDEA)
- One of the components of service offered through the co-op is the Assistive Technology Team composed of educators, speech and language pathologists, an occupational therapist and a physical therapist
- We have developed an extensive lending library of equipment for trial across all domains of technology
OUR STUDENTS

• Our students come from the member districts and attend school programs within their own districts or within early childhood or life skills classes administrated through NSSED.

• Students with physical disabilities and limited access for powered mobility have included children with:
 • Cerebral palsy
 • Muscular dystrophy
 • Spinal muscular atrophy
 • Brain tumor/Traumatic Brain Injury
OUR STUDENTS, Cont’d.

- Leukodystrophies
- Rett Syndrome
- Hypotonia with Developmental Delay
- Spinal Cord Injury
- Locked-In Syndrome, post Brain Stem Aneurysm
Greater than 90% of our students who use power wheelchairs rely on assistive technology for access to academic materials

- Accessibility features within computer or device program
- Writing software to improve speed of production
- On-screen keyboards
- Text-to-speech
- Kurzweil or similar programs for note taking, editing and reading of any text material
POWER WHEELCHAIRS AND AAC/COMPUTER NEEDS, Cont’d.

- Greater than 50% of our students who use power wheelchairs rely on AAC devices, computers and tablets for expressive communication
 - Dedicated devices with full computer function
 - District supported computers (includes chrome books, laptops and access to district networks and desk top systems) through 1:1 initiatives
 - Tablet technologies, primarily iPad and mini iPad
 - Most systems utilize alternate controls (switches, integration with driver controls, alternative keyboards, alternative mouse pads or joysticks) and interface boxes or software
MOUNTING DEVICES
COMPUTER ACCESS
NSSED INTEGRATED TECHNOLOGY APPROACH

- Evaluation of student needs with all areas of the educational setting
- Team assessments by speech and language pathologist, educators, occupational and physical therapist
- Review of academic performance and current curriculum to determine discrepancies
- Consideration of technologies, physical abilities, current equipment used by student
Extended trials including of power chairs, data and outcome presentation with team, family

Team decision on further trials, next steps, recommendations

Power wheelchair evaluation with wheelchair supplier

Determination of funding (insurance, Medicaid, school district)

Documentation, ordering, delivery, follow-up training with student, family and educational team as needed
Currently includes 4 power wheelchairs (2 small power chairs, 1 rear (18” W) and 1 mid wheel (16” W) power chair, all with enhanced electronics

- 4 Invacare joysticks and 3 head ASL head arrays
- Switch boxes and interfaces for alternate switches
- Multiple switches (wired and wireless) of varying degrees of pressure and activation distance
- AMDI fiber optic and peizo-electric switches
- Ablenet ribbon, leaf, micro-light, squeeze, pillow, string and spec switches
- TASH penta, tip and lever switches
NSSED LENDING LIBRARY

- Mercury tip switch
- Adaptivation Mini touch pad
- Words Plus infra red sensor
- A variety of mechanical switches in dimensions from 1-5” in diameter
- 6 external joysticks for computer mouse and click
- 3 Trackball external joysticks
- Multiple AAC devices and tablets with cases
- Daessy-Daedalus mounting assessment kit and parts
- TASH mouse emulators (3)
ADDITIONAL RESOURCES

- Local wheelchair suppliers and manufacturers from Invacare, Permobil, Quantum, ASL, Switch-It, Stealth
- Local and regional suppliers of seating system components for postural supports
- National manufacturers of switches, joysticks, head arrays and electrical components
- Manufacturers and suppliers of AAC devices
- Lift equipped vehicles for transportation of power wheelchairs as needed
THREE STUDENTS WITH DIVERSE NEEDS

- 1st student is 14 year old female with diagnosis of schizencephaly, high muscle tone, limited range of motion, minimal strength (grade 2-3 biceps/triceps) increasing fatigue through day
 - Originally using secondary joystick for dedicated AAC device
 - Added TASH mouse mover and separate switch for clicks for AAC through her computer (Macbook) using her wheelchair joystick
 - Step-by-Step communicator for quick greetings
 - Power wheelchair driver for 7 years with decreasing ability to maintain forward motion due to increased m. tone during day and fatigue
1st STUDENT, Cont’d.
EVALUATION FOR NEW POWER WHEELCHAIR

- Identified goals:
 - Reduce fatigue for transition to high school/larger environment
 - Maintain AAC and computer competence
 - Integrate new system
 - Improve comfort
 - Improve postural alignment by supporting curvatures in upright
 - Provide on/off and mode changes for independence
 - Position all controls within her reach (approx. 4” x 6”)
 - Trial of alternate controls
FINAL DECISIONS

- Quantum Q6 Edge with enhanced electronics and multiplier harness
- Custom molded seating
- Dual methods of driver control following trial: Q-Logic stand alone joystick and Switch-It head array
- Q-Logic Enhanced visual display
- Gatlin swing-away mount
- Ablenet spec switches
- Power tilt
- Mount clamp for existing computer mount
CUSTOM MOLDING
DOCUMENTATION FOR FUNDING (INSURANCE AND GOVERNMENT COVERAGE)

- Detailed letter of medical necessity, reviewing physical assessment, prior use of equipment, data from trials, medical history and justification of power chair and each item
- Photos of student (posture supine and sitting, current equipment and trial equipment)
- Data for driving and computer access with joystick
- Data for driving with head array
- Approval received in 2 months, delivery 3 ½ months from evaluation
2nd STUDENT

- 21 year old student with diagnosis of DMD and progressive loss of strength/endurance/range of active movement
- Prior driving experience of 14 years with excellent navigation skills indoors and outdoors
- Used joystick for driving, tilt, recline, leg elevation and as mouse for computer on-screen keyboard and internet navigation
- Could access all joystick functions once hand was placed on joystick
2nd STUDENT PWC EVAL.

Student goals:
- Comfort with independent positioning (back and leg pain, numbness in legs)
- Control of driving and seat positions as well as computer access through driver control
- On/off independently
- Consider standing as a position change
- Ability to drive throughout the day
FINAL DECISIONS

- Quantum Q6000Z with enhanced electronics
- Q-Logic EX joystick with driver controls and seat functions
- Q-Logic Enhanced display with multiplier harness
- Switch-It drive station controller with dedicated seat functions and driving capabilities
- Motion Concepts TRx Ultra-Low seat frame with tilt, recline, leg elevation functions
- No standing
DOCUMENTATION FOR FUNDING (INSURANCE AND MEDICAID)

- Detailed letter of medical necessity, reviewing physical assessment, prior use of equipment, data from trials, medical history and justification of power chair and each item
- Data for driving and computer access with joystick
- Detailed information on his use of drive station controller for gaming
- Approval received in 3 months (one denial), delivery 5 ½ months from evaluation
3rd STUDENT

- 19 year old male who sustained a brain stem stroke during the repair of an aneurysm, resulting diagnosis is quadriplegia and locked-in syndrome
- Active movements limited to eyebrow, flexion of 3rd finger right hand and occasional biceps flexion on right for muscle strength grade 2 and limited endurance
- No active head or trunk control
- Manual wheelchair user, dependent propulsion
PATRICK
3rd. STUDENT, Cont’d

- Returned to school following 14 mos. rehab (Jan. 2011)
- AAC through Dynavox Vmax, eye gaze and single switch on splint positioned near 3rd finger right hand
- Uses color coded spell board and eyebrow movement for partner assisted communication
- Personal goal of independent mobility
COMMUNICATION METHODS

DYNAVOX Vmax with Eyemax and Partner assisted spell board
THE CHALLENGES

- 2 reliable active movements (left eyebrow/eyelid, flexion of 3rd digit right hand) and sporadic control of 4th and 5th digits, biceps and shoulder elevation on right
- Strength of movements in grades 1-2 with ranges limited to approximately $\frac{1}{2}$"
- Limited endurance
- Acceptance of current level of ability
- Research and internet overload
THE PLAN

- It evolved, to put it mildly
- We assessed all movements for strength, range and planes of movement
- We took inventory of our lending library
- We researched access methods (switches, track pads, infra-red sensors) Chart to follow on next slides
- We learned his system and equipment, benefits and limits
- Contacted local wheelchair manufacturers to arrange trials
DRIVER CONTROLS FOR USERS WITH MINIMAL OR PROGRESSIVE LOSS OF STRENGTH

* Indicates items trialed with student

<table>
<thead>
<tr>
<th>ACCESS METHOD</th>
<th>REQUIREMENTS</th>
<th>CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablenet Micro-light *</td>
<td>0.4 oz. pressure</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>ASL Ultra-light *</td>
<td>7.0 oz. pressure</td>
<td>Grade 3-4/5 strength</td>
</tr>
<tr>
<td>Ablenet Ribbon</td>
<td>4.0 oz. pressure</td>
<td>Grade 2-3/5 strength</td>
</tr>
<tr>
<td>Ablenet Leaf *</td>
<td>1.8 oz. pressure</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>AMDI Piezoelectric *</td>
<td>Vibration</td>
<td>Grade 1/5 strength</td>
</tr>
<tr>
<td>AMDI Fiber Optic</td>
<td>Fiber Optic Mvt. Sensor</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>ASL Proximity</td>
<td>Minimal Mvt. Sensor</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>Ablenet Squeeze</td>
<td>11 oz. pressure</td>
<td>Grade 3-4 strength</td>
</tr>
<tr>
<td>TASH Penta</td>
<td>4.5 oz. pressure</td>
<td>Grade 2-3 strength</td>
</tr>
</tbody>
</table>
DRIVER CONTROLS cont’d

<table>
<thead>
<tr>
<th>ACCESS METHOD</th>
<th>REQUIREMENTS</th>
<th>CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASH Lever</td>
<td>1.75 oz. pressure</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>SCATIR (self calibrating auditory tone infrared)</td>
<td>Eye Blink</td>
<td>Grade 1-2/5 strength</td>
</tr>
<tr>
<td>Ablenet Spec *</td>
<td>3.0 oz. pressure</td>
<td>Grade 2-3 strength</td>
</tr>
<tr>
<td>Words-Plus Infrared/Sound/Touch *</td>
<td>Infra red sensor for any movement</td>
<td>Grade 1-2/5 strength</td>
</tr>
<tr>
<td>Mercury Tip Switch *</td>
<td>No pressure, small mvt.</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>ASL Micro Mini joystick *</td>
<td>0.4 oz. pressure</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>SwitchIt Micro Pilot Joystick *</td>
<td>0.352-0.62 oz. pressure</td>
<td>Grade 2/5 strength</td>
</tr>
<tr>
<td>ASL MicroExtremity Joy*</td>
<td>4.0 oz. pressure</td>
<td>Grade 2-3/5 strength</td>
</tr>
<tr>
<td>TASH Mini joystick</td>
<td>7.0 oz pressure</td>
<td>Grade 3-4/5 strength</td>
</tr>
</tbody>
</table>
DRIVER CONTROLS, cont’d

<table>
<thead>
<tr>
<th>ACCESS METHOD</th>
<th>REQUIREMENTS</th>
<th>CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stealth Mushroom joy</td>
<td>14.4 oz. pressure</td>
<td>Grade 4/5 strength</td>
</tr>
<tr>
<td>Switch-It PS game control</td>
<td></td>
<td>Grade 2/5 and 1” mvt.</td>
</tr>
<tr>
<td>Mini Touch Pad *</td>
<td></td>
<td>Grade 2-3 and ½” mvt.</td>
</tr>
<tr>
<td>Visual Display/Single switch scan</td>
<td>Any single switch</td>
<td>Switch and Site Dependent</td>
</tr>
<tr>
<td>Sip and Puff</td>
<td>Pressure variation</td>
<td>Breath Support</td>
</tr>
<tr>
<td>Rolltalk *</td>
<td>Eye Gaze</td>
<td>Switch/Site Dependent</td>
</tr>
<tr>
<td>Permobil Magic Drive Touch</td>
<td>Touch Screen, Switches, USB keypad</td>
<td>Driver Control switches</td>
</tr>
<tr>
<td>Tongue Controlled Joy</td>
<td>Tongue Stud</td>
<td>Grade 2-3 strength, ¼-1/2” mvt. of tongue</td>
</tr>
<tr>
<td>Brain/Machine Interface</td>
<td>EEG controlled</td>
<td>Experimental to date</td>
</tr>
</tbody>
</table>
ACCESS METHOD TRIALS

<table>
<thead>
<tr>
<th>ACCESS METHOD</th>
<th>LOCATION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablenet Micro-Light</td>
<td>3rd digit, R hand on splint</td>
<td>Consistent Success</td>
</tr>
<tr>
<td>ASL Ultra-Light</td>
<td>3rd digit, R hand on splint</td>
<td>Unable to activate</td>
</tr>
<tr>
<td>Ablenet Leaf</td>
<td>3rd, 4th digits R on mount</td>
<td>Inconsistent</td>
</tr>
<tr>
<td>AMDI Piezoelectric</td>
<td>R hypothenar muscles</td>
<td>Freq. over activation</td>
</tr>
<tr>
<td>Ablenet Squeeze</td>
<td>R palm, 3rd, 4th digit flexors</td>
<td>Partial activation, but</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inconsistent</td>
</tr>
<tr>
<td>Ablenet Spec</td>
<td>3rd, 4th digits R hand on splint</td>
<td>Partial compression, no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>activation</td>
</tr>
</tbody>
</table>
ACCESS TRIALS, Cont’d

<table>
<thead>
<tr>
<th>Device</th>
<th>Location & Mounting</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words-Plus Infrared Glasses</td>
<td>left side</td>
<td>Interfered with spell board communication</td>
</tr>
<tr>
<td>Tip Switch – Mercury</td>
<td>R hand and 3(^{rd}) digit</td>
<td>Inconsistent mvt.</td>
</tr>
<tr>
<td>ASL Micro-Mini</td>
<td>Mounted below R 3(^{rd}) digit</td>
<td>Inconsistent for mvt. In all directions</td>
</tr>
<tr>
<td>Switch-It Micro Pilot</td>
<td>Mounted below R 3(^{rd}) digit</td>
<td>Inconsistent for mvt. In all directions</td>
</tr>
<tr>
<td>ASL Micro Extremity joy</td>
<td>Mounted below R 3(^{rd}) digit</td>
<td>Unable to activate</td>
</tr>
<tr>
<td>Mini Touch Pad</td>
<td>On splint, held and mounted</td>
<td>Unable to move 3(^{rd}) or 4(^{th}) digit due to traction of pad</td>
</tr>
<tr>
<td>Rolltalk with Eye gaze</td>
<td>Mounted on pwc</td>
<td>Successful for driving from initial trial</td>
</tr>
</tbody>
</table>
THE TIMELINE

- Aneurysm occurred October 2010
- Student re-entered school January 2012
- First power trial, 1/25-3/8/2012
 - Permobil C400
 - Switch It Micro Pilot joystick
SECOND POWER TRIAL

- 2nd Trial from 3/14-6/30/2012 and again 5/10-17/2013
 - Invacare TDX, mid-wheel drive
 - ASL Micro-Mini joystick
Patrick determined he felt most stable in front wheel drive chair

Clear need for tilt, recline, leg elevation for positioning and postural supports

Standing considered as an option 9/2012
 - Permobil C500 V
 - Invacare FDX with Motion Concepts MPS seat frame

Optimal head control and least physiological stress going through supine to stand
THINGS GET COMPLICATED

- Closing the Gap Conference October 2012. CTG is an educationally oriented assistive technology conference, held annually in Minneapolis.
- ASL presentation with Lisa Rotelli and Karen Kangas on the Rolltalk Nova with Intelligaze as a method of AAC, fully functional Windows based computer with capabilities to interface with power wheelchairs for driving and independent adjustment of seat functions.
ROLLTALK NOVA
DRIVE SCREEN
SEAT FUNCTIONS
COMMUNICATION
FIRST ROLLTALK TRIAL

- December 19, 2012
- Invacare FDX
ROLLTALK AND PERMOBIL TRIAL, April 8, 2013
DECISIONS

- Comparisons of Dynavox VMx with Eyemax vs. Rolltalk Nova with Intelligaze
 - Communication ease
 - Software compatibility
 - Service (US vs. Norway with ASL in US)
 - Ease of usage
- Defining driver control parameters
 - Rolltalk
 - Micro joystick
 - Both
FINAL EVALUATION

- July 2012
- Determination of all items to be included in LMN and order
- Decisions on paperwork
 - LMN
 - Illinois Department of Healthcare and Family Services Evaluation form (hfs3701h)
 - Video clips
 - Data on trials
DOCUMENTATION TO APPROVAL AND DELIVERY

- Documentation completed and mailed with jump drive video clip footage August 2013

- Insurance and Medicaid approval October 2013
 https://www2.illinois.gov/hfs/SiteCollection/Documents/hfs3701h.pdf

- Delivery December 20, 2013
POST-DELIVERY

- Ongoing follow-ups for Rolltalk mounting, staff training, positioning, transit safety problems, programming of drive speeds, compatibility of all electronics for wheelchair, attendant control Rolltalk (drive and seat functions) and working towards mounting of ASL Micro Mini alternative joystick drive method
TRANSITION TO ADULT SERVICES

- School related services end on day before 22nd birthday in Illinois
- Ongoing needs across all areas of Assistive Technology to benefit from the technologies he has in place
- Potential for new technologies with time, changing needs
- Transition to Assistive Technology Unit at University of Illinois at Chicago
CONCLUSION

- Hands-on opportunity to trial Rolltalk Nova features
- Discussion/Questions

- Contact info: Mary Bacci, PT, MS
 Northern Suburban Special Ed. Dist.
 mbacci@nssed.org

THANK YOU FOR COMING AND PARTICIPATING